Miracles, Monsters, And Do-Re-Mi: A Variant Cultural History of The Word “Mutation”


None of us can cast stones for we are all fellow mutants together.

– Herman Muller (1950)

Until relatively recently, mutations were thought to be uncommon events that irregularly popped up around the genome, save for a few hotspots here and there. Unless exposed to a mutagen, DNA was conceptualized as a fairly stable molecule and the individual genome tolerated only a limited amount of variation. But large-scale DNA sequencing has demonstrated that gene mutations are pretty much the norm rather than the occasional exception. For example, a recent as yet unpublished study by Craig Ventner’s team of 10,545 deeply sequenced  human genomes found that each genome contributes on average 8,579 novel variants and uncovered more than 150 million variants in the coding and non-coding regions. If you run a complex genetic test and you don’t find a mutation of some sort, then there is probably something wrong with your sequencing technology. Of course, not all gene mutations are bad. Some are disease associated, some may confer biological advantage, some are neutral, and some are difficult to pin down. Differentiating among the good, the bad, and the neither-good-nor-bad has become a bête noire for anyone faced with interpreting the clinical significance of genetic test results for patients, especially when classifications differ among labs.

Although the word mutation carries some potently negative connotations, its definition implies objective scientific neutrality – “An alteration in the nucleotide sequence of DNA,” in its simplest form. But of necessity this is only a recent, post-Watson and Crick wording that itself has mutated over the centuries and that has often had some not-so-neutral musical, psychological, biological, pop culture, sociological, and religious ramifications. A hop, skip, and a jump through the history of the word reveals the richness and variety of its usage – as well as its darker sides.

According to the Oxford English Dictionary, one of the earliest recorded occurrences of the word goes back seven centuries to – who else? – Chaucer who used it in the sense of a change or alteration and whose Middle English rendered it as mutaycouns (“mutaycouns of fortune” from his translation of The Consolation of Philosophy by the Roman philosopher Boethius). Shakespeare used it similarly when, in King Lear, Edgar cries that the misfortunes of fate shorten our lives “World, World, O World! But that thy strange mutations make us hate thee, Life would not yield to age.”

Mutation was also used to describe the key Catholic belief in the transubstantiation of bread and wine into the body and blood of Jesus Christ during the sacrament of Communion. In the 1426 translation by John Lydgate of the French Cistercian monk Guilaume de Deguileville’s Pilgrimage of the Life of Man, a popular devotional book of the Middle Ages, we read about “That marvelous mutacion, Bred into flesshe, wyn into blood.”  This “marvelous mutacion” is a critical distinction between Protestant and Catholic theology, two religions that seemed to be at war with each other for most of the Middle Ages. Catholics believed that the Eucharist wafer dipped in wine transubstantiates into the actual body and blood of Christ whereas Protestants viewed it as a symbolic and ritual re-enactment of the Last Supper. Presaging future genetic connections between monsters and mutations, Martin Luther referred to transubstantiation as “a monstrous word for a monstrous idea.” During my Catholic school years, I remember joyously singing “Eat His Body, Drink His Blood, and we’ll sing a song of love. Allelu-Allelu-Alleluia!” Leonard Cohen does not have a thing over the Catholic hymnal.

Musically, mutation is the exchange of one syllable for another in an ascending note scale, as in solmization, i.e., associating a musical note with a human sound. Think do-re-mi-fa-so-la-ti-do. Mutation is also used in music to describe changes in singing voice that occur with age and gender, particularly the change that occur in boys’ voices as they transition to puberty, much to the chagrin of many choirmasters of Medieval Europe’s churches (a curiously coincidental link between religion and mutation). Choir boys were faced with a Sophie’s Choice of either genital mutilation or mutation.

Mutation also bridges musical and genetic definitions when DNA sequences are transformed into musical notes. For a couple of hundred bucks you can upload your 23andMe DNA sequence and have it translated into a piano solo, dance music, or a fully scored orchestral work. It’s a little bit funny, but the thing is what I really mean is that it gives new meaning to Elton John and Bernie Taupin’s 1970 hit single Your Song. As a leading candidate for the award of The World’s Worst Dancer, my daughters shudder to think what my DNA would sound like if it were translated into dance music and performed in public. No doubt it would contain many nonsense mutations although my daughters would hope it contains a very early premature stop codon. In a darkly comic coincidence that bridges modern music, Herman Muller’s above quote, and DNA, the musician Frank Zappa named his official fan club United Mutations, supposedly after reading his weird fan mail (think of how unusual the mail must have been if Zappa found it strange). And in another odd connection between mutation’s musical and biological connections, Zappa sounded like Darwin when he proclaimed “Without deviation from the norm, progress is not possible.”

The earliest reference I could find to the use of the word mutation in the context of evolution was in the 1869 publication Die Formenreihe des Ammonites subradiatus by Wilhelm Heinrich Waagen, a German paleontologist and geologist (no doubt somebody used the word before Waagen; there is always somebody else who was “really the first”). Based on his observations of fossil ammonites in the Punjabi Salt Range, Waagen proposed that evolution occurred slowly through minute mutations in a definite direction and that could be observed by careful examination of successive fossil strata, resulting in the eventual emergence of new species (though I think  he was thinking of mutations as anatomic rather than strictly genetic phenomena). Waagen was a devout Catholic who opposed Darwin’s evolutionary model and who tried to reconcile the fossil record with Genesis, suggesting that new species arose through new acts of divine creation

Mutation in its more modern sense arose with the re-discovery of Mendel’s work by de Vries, Correns, and Tschermak-Seysenegg and the flowering of modern genetics and evolutionary theory in 1900. de Vries in particular emphasized the importance of mutations to evolution in his magnum opus The Mutation Theory (1901-03). Gene mutations were now understood to be the engine that drove evolutionary change and chromosomes were thought to somehow carry genes. But the physical nature of mutations remained a mystery that was not resolved until the early 1950s when Alfred Hershey and Martha Chase identified DNA as the “hereditary material” and Watson and Crick famously resolved the structure and self-replicating mechanism of DNA.

Mutations could be adaptive or non-adaptive, though the presumption was that most mutations were evolutionary dead-ends and natural selection genetically purified the population (one can see the natural jump to eugenic ideologies). Creatures that were very different from their contemporaries presumably from underlying gene mutations were sometimes called, in the vocabulary of Richard Goldschmidt, “Hopeful Monsters,” evolutionary opportunities for saltatory speciation through chromosomal level mutations (Hopeful Monster and Hopeful Monsters are also the names of two different musical bands, as well as the title of 1990 novel by Nicholas Moseley). Others thought that hopeful monsters were only hopeful ideas and that speciation occurred through a more gradual dynamic balancing of winnowing and selection of small effect mutations.

Early 20th century eugenicists took the notion that mutations were largely negative and ran with it down some dark ethical alleyways. The “defective germ plasm” of immigrants from anywhere other than certain parts of northern and western Europe, people dwelling in the lower socio-economic rungs, the feeble-minded, and other undesirables made them genetic threats to the hereditarily healthy population. The solution to avoid becoming awash in defective germ plasm was to coercively or non-coercively discourage such genetic riff-raff from producing offspring. Eugenicists also encouraged genetically desirable people to have more offspring but such genetic hopefuls were not said to carry good mutations, just good genes.

The early 1930s saw the introduction of the far more neutral term allele, derived from allelomorph, which was itself introduced in 1902 by William Bateson, who also gave us the word “genetics.” Essentially alleles were versions of the same gene that differed on a DNA level. Although allele is in genetic publications, it has never really entered into the wider public vocabulary and discussion around genetic variation.

The geneticist Herman Muller had a career-long interest in genetic mutations, starting with his work with Drosophila in Thomas Hunt Morgan’s Fly Room at Columbia University and continuing with his Nobel-winning work on radiation induced mutations. His work, perhaps more than any other, was critical in the development of the idea that mutations were primarily harmful. In his influential 1950 American Journal of Human Genetics paper “Our Load of Mutations,” he viewed mutations as a “load” that the human species had to bear. However, he thought that most mutations were only slightly disadvantageous, and that each of us carries 8 slightly harmful mutations. Each mutation carried a selective disadvantage of 2.5%, and thus on average each person has a 20% chance of death or reproductive inefficiency as a result, under the assumption that humans were still living in the Neolithic. Muller worried that the comforts of the modern world allowed more maladaptive mutations to survive and increase, and that environmental exposure to ionizing radiation increased the frequency of  new mutations. This problem could be ameliorated by reducing the amount of man-made ionizing radiation and discouraging reproduction among those who carried the most mutations, “only” 3.5% of the population in his reckoning. Theodosius Dobzhansky served as a counter-point to Muller, arguing that variation was mostly adaptive and we should embrace the social and genetic diversity brought about by mutations (Muller’s paper and his disagreements with Dobzhansky are thoughtfully discussed in historian of biology Diane Paul’s 1987 paper “Our Load of Mutations” Revisited and is my primary source here).

Thus until about 60 years ago, with a few exceptions, mutations were largely viewed as having negative effects, while recognizing that some portion must be positive to allow adaptation and evolution to occur. Other than synonymous mutations in which the amino acid sequence is not altered, the notion that a mutation could have no phenotypic effect was not seriously discussed because mutations could only be inferred by their phenotypic effects. But in the 1960s, Motoo Kimura, among others, suggested that, based on studies of protein evolution, the rate of nucleotide substitutions was so high that it was difficult to believe they all had a positive or negative phenotypic effect. He felt that most mutations were neutral, that is, they have no measurable phenotypic effect and genetic variations among populations were largely the result of genetic drift, influenced by population size and dynamics. Mutations are like algae floating in the gene pool, pulled by the stochastic and unpredictable tides of populations

In Pop Culture, public fear of mutation arose in the context of the post World War II threat of nuclear war and the potential subsequent widespread exposure to ionizing radiation. Mutants in the public conception were typically monsters or super-humans with special powers that could be a blessing and/or a curse. Godzilla, The X-Men, the backwoods Southerners of  Deliverance, certain zombies (though apparently there are some finely nuanced arguments about the distinction between mutants and zombies), Spiderman, and the Hulk all owe their unique characteristics to mutations induced by radiation or inbreeding. For the most part, you don’t want to be these creatures. While it would be pretty cool to web-sling through the upper reaches of Manhattan’s skyscrapers, hulk-out to frighten off bad guys, or maybe even level a city or two, the message is almost always that being a mutant comes with the Faustian price of giving up the soul of your humanity. In conversation, to label someone a mutant is to suggest that they are very different, and usually in not such a good way. Even when used in a sort of positive context to describe super-athletes who seem to function on a different level than their competitors such as LeBron James, Diana Taurasi, Babe Didrikson Zaharias, Babe Ruth, Wayne Gretzky, Florence Joyner, Michael Phelps, or Diana Nyad, its use suggests that they are a different species from the rest of us, “freaks of nature” (ironically echoing the centuries old terminology “sports of nature” to describe biological specimens whose anatomy deviated significantly from the species type).

Not surprisingly, for many patients in genetics clinics, discovering that they carry a mutation, even in a recessive form, can be a narcissistic ego blow and affect desirability as a mate. If you carry a mutation you are implicitly a mutant. Connotations of the word mutation contribute to fears of having children with disabilities. Currently in medical genetics, and probably for the better, mutation is falling out of favor and there is a trend to replace it with a more neutral, or least less negative, terminology. Mutations are now described as variants that are categorized by qualifiers – benign polymorphism, uncertain significance, deleterious/pathogenic, etc. Although this nicely delineates the multiple effects and uncertainties of mutations, it doesn’t necessarily suggest that carrying a mutation is a good or normal state of affairs. And carrying a pathogenic variant, even a likely pathogenic variant, usually doesn’t make you feel too good about yourself when you wake up each morning and look at yourself in the mirror.

Mutations also cause much fretting and hand-wringing on the societal level. Witness the controversy around genetically modified organisms and worries that Frankenstein-like plants or animals will take over the environment like some real-life mutation, er, variant, of Day of The Triffids. Even CRISPR-Cas9 and other gene editing systems, which are intended to fix mutations, are criticized because of fears that they may unknowingly induce undesirable mutations in non-targeted parts of the genome.

At the end of the day, mutations are part of our biological identity. They are literally etched into our DNA, although we would be ignorant of the existence of most of them in the absence of DNA sequencing technology. None of us are Wild Types and all of us are Wild Types. We should embrace mutations, not reject them (well, at least most of them). Mutation is the norm for life, not the exception. Despite their typical neutrality, fear of mutations has been used to justify religious wars, castration of pre-pubescent boys, sterilization of the “unfit,” and to engender deep-rooted psychological fears in parents and in societies. Muller and Zappa were both right – we are all mutants and we should be united. But it turns out that being a mutant is usually not such a bad thing.

For an excellent short review of the concept of mutations in the history of biology, see Mutation: The History of An Idea From Darwin To Genomics by Elof Axel Carlson, Cold Spring Harbor Laboratory Press, 2011. Once again thanks to Emily Singh for help with graphics. 

3 Comments

Filed under Robert Resta

Ancestry and the Long Distance Call

These are the days of miracles and wonder

 

I read the science news in 2016 and hear lyrics from that Paul Simon song echoing in my head.

 

These are the days of miracles and wonder

And better variant calls

The way that CRISPR works on everything

The way we sequence it all

 

Perhaps I paraphrase. But these are heady times, when the boy seems poised to burst out of his bubble, and fantasies of a baboon heart turn into dreams of a human heart instead, grown in a lab or in a pig, and we will have no more of slaughtering primates thank you very much.

 

These are the days of promises and phase one trials,

and medicine is magical and magical is art

 

When we cure your disease, I will feed you pancakes with maple syrup and put frosting on your birthday cake, I tell my beloved friend with type I diabetes. We will float Islets of Langerhans in a pouch beneath your skin. We will re-engineer your pancreatic stem cells to be invisible to your immune system.

 

Promises of miracles come with questions. Can we? Should we? How will we pay for it all?

 

We. We use the word freely, but what does it mean? This is a genetics question too, one that we (the purveyors and patrons of genetic technology, the readers of this blog) don’t ask ourselves often enough. Who will benefit from the miracles that are now only twinkles in the eye of brilliant minds?

 

Who is included when we talk about ‘we’? A family, a tribe, a nation, a species? It is one of the ironies of the genomic age that the technological revolution that makes it possible for us to think and act globally has also spawned a growing interest in atavistic concepts like bloodlines. Racism raises its ugly old head on new platforms like Twitter and Facebook. The through-the-roof popularity of ancestry testing both testifies to and nurtures an instinct to tribalism that is ancient beneath the glossy surface of its web-based, consumer-facing interface. A powerful thing, genealogy, beyond the fun and games, with the power to bring us together or tear us apart.

 

Research testifying to this was published earlier this year, in the form of an article called “Living in a Genetic World: How Learning About Interethnic Genetic Similarities and Differences Affects Peace and Conflict”. The authors conducted a series of studies observing how reading a single article about genetic relatedness or the lack thereof altered the response of a Jewish audience toward a hypothetical Arab population, and vice versa. Participants queried after being given a mock BBC article describing Jews and Arabs as genetic cousins expressed a less negative attitude toward individuals of the other ethnicity. Repeating their experiment with populations of Jews of different ages and from different parts of the United States, Sasha Kimel from Harvard and colleagues from the University of Michigan, Europe and Israel found that a suggestion of genetic kinship consistently increased support for peacemaking between Israel and the Palestinians.

 

Now don’t get me wrong, small studies and academic hypotheticals don’t represent a road map to peace in the Middle East. But the discussion points to something we as genetic counselors know from experience: genetic ideation is a powerful force in shaping notions of identity. It helps define ‘we’ for each of us.

 

This is something to think about every time we give out genetic information. For 23andMe and Ancestry.com, it could mean writing a report that puts as much emphasis on what unites us as on what divides us. By convention, we talk about first cousins sharing 12.5% of their DNA.   But we share more of our DNA than that with a banana. Yes, I know that what we mean is that 12.5% of our DNA and our cousin’s DNA is identical by descent. Testing companies give FAQ’s explaining the numerics of relatedness; perhaps the 99.9% we all share ought to merit an asterisk at the very least.

 

It is a strange moment in which we live, full of hope and promise and fear and sadness. A new era builds at our back, with unprecedented tools to diagnose, treat and even prevent disease, while the landscape in front of us is one of increasing income inequality and fitful, angry isolationism. The routine injustice of bigotry and unequal access are far greater threats to the genomic era than the sci-fi horrors of Drs. Frankenstein and Moreau. CRISPR can’t change your zip code.

 

There is no simple solution to this, but the battle begins with how we define ‘we’. Genetics needs to remind us of what we share as often as it tells us how we are different. Many of you are out there every day fighting battles you may not recognize as part of a larger war: battling insurance companies for access, battling to bring diversity to our biobanks and clinical trials, supporting a new vision of family, in which our 99.9% shared DNA is enough, and we are not defined by the fraction that is identical by descent. We are educators in a field that is an agent of change, and so it falls to us to work for an ever more expansive and inclusive definition of ‘we’. Without that, we risk that the amazing technology of the genomic age will be perverted into a tool for doubling down on the things that divide us.

 

These are the days of miracles and wonder

This is the long distance call

The way the camera follows us in slo-mo

The way we look to us all

The way we look to a distant constellation

That’s dying in a corner of the sky

These are the days of miracle and wonder

And don’t cry baby don’t cry

Don’t cry

 

 

follow me on twitter!

@laurahercher

 

 

 

1 Comment

Filed under Laura Hercher

Who Decides?

The past decade has seen an evolution in the way that new genetic tests become incorporated into clinical practice. Historically, genetic tests such as amniocentesis, CVS, AFP screening, newborn screening, and ethnic-based carrier screening were introduced after undergoing government-funded studies conducted by academic and clinical institutions. This research was typically supplemented by exploration of the ethical and socio-economic issues generated by new technologies and engaging the principal players in the at-risk community in open discussion. This may have resulted in a slower clinical integration of novel technologies but the net result was better patient care because the technology’s strengths, limits, and ethical and socio-economic implications were more clearly defined before the testing was offered routinely. Not to say that this approach was perfect. Recall the problems that arose when sickle cell carrier screening was introduced only to become entangled in the thorn-bush of racial politics and racial history.

Commercial interests played less of a role in such decisions in part because the tests generated lower profits due to their labor-intensiveness (think about the time spent in counting chromosomes and hand cutting and pasting karyotypes or running Southern blots), had limited target populations due to the rarity of most genetic disorders, and could be costly. There just weren’t that many large-scale genetic testing labs out there.

Now, however, genetic testing is cheaper, more profitable, less labor-intensive, and has a wider proposed target population – every pregnant woman, many people with cancer or who are at hereditary risk (maybe only 10% of breast cancer patients are appropriate candidates for hereditary testing but most of those patients have a lot of relatives), every woman, and, as with the aim of some direct to consumer (DTC) tests, everyone. Genetic labs pop up left and right, merge, expand, are bought out, and otherwise engage in business. Twenty years ago, trying to find a lab to run a genetic test could involve hours of detective work and secret word of mouth sources. Now labs are knocking on our doors cajoling and pleading for our patients’ samples. While most labs are deeply concerned about patients and are well-intentioned, they are also equally concerned about profits. Money-making, after all, is why businesses exist so it is no surprise that labs have started to take a more active role in introducing new genetic tests. This is not a phenomenon peculiar to genetics. It has been going on in medical care for decades, and genetics is just starting to catch up. It is also reflective of the growing trend in the health care industry to refer to patients as consumers of medical care and to implement customer service based patient care models.

Several genetic tests come to mind here – expanded carrier screening, offering noninvasive prenatal testing (NIPT*) to low risk pregnant women, multigene cancer panels, and SNP-based DTC testing. These tests worked their way into patient care after aggressive sales tactics and questionable advertising claims helped amplify the demand. This was further driven by competition between clinics to offer the latest and greatest tests to their patients, the general eagerness of genetic counselors to seek genetic answers for their patients, and patient word-of-mouth networks. About the only counter-balance has been a reluctance on the part of health insurers to cover new and unproven testing. Most of my patients want that new genetic test but only if their insurance company covers it, although low-cost labs like Color Genomics are challenging this limitation.

To some degree, patients can benefit from these tests but not necessarily to the extent that one might think. 23andMe states that their product should not be used for clinical decision-making – at least for now – while at the same time offering “wellness reports” and “genetic snapshots of your health.” This sounds to me like clever ad copy to deflect regulatory concerns about health claims while at the same time suggesting that the product is an important aspect of everyone’s medical care. Supporters of expanded carrier screening acknowledge its limitations in terms of  studies on net health benefits and cost effectiveness but still offer the test routinely and subtly suggest that the test is standard when they claim that they work directly with a network of over 6,000 health care professionals. NIPT may soon become an appropriate test for all pregnant women, but this conclusion should be driven by independent studies conducted outside of the commercial sector. Multigene cancer panels have shown some benefits, but not nearly as much as many clinicians had hoped for.

I am grateful for the valuable contributions that labs have made to patient care. Quicker turn around times, incredible help with verifying insurance coverage, and highly knowledgeable genetic counseling staff who happily share time and considerable expertise in interpreting complicated results. 23andMe provides far better patient education materials than any single genetic counselor or clinical institution or professional organization could ever hope to create. And 23andMe was several steps ahead of everyone in facilitating patient connections to researchers and each other as well as when the company made raw data available to consumers. I never anticipated that patients would have wanted such level of detail. Along those lines, note the recent complaint filed wit the Office of Civil Rights against Myriad in which several patients assert that their HIPAA rights were violated because they claimed that Myriad would not share all of the genetic variants that were detected, including those that are considered benign or clinically insignificant. Clearly I am still time-stuck in the era when couples were ecstatic to receive a karyotype of their unborn baby and I can’t remember a single patient requesting records of all their amniotic fluid metaphase spreads and cell counts.

Of course, introducing new tests before they are ready for prime time is just part and parcel of living in a market driven society. The context is much larger than the genetics niche or even medical care in general. Labs and competitive clinics should not be faulted for engaging in behavior that is widely condoned elsewhere. Nor should all blame be placed squarely on the shoulders of labs. Everyone needs to be engaged in this process. It is not just the buck dancer’s choice, my friend. Labs can put the brakes on new tests a bit. Clinicians and labs need to form better relationships while tests are in development. Labs need to step back while independently funded research verifies claims of accuracy. Governments need to step up funding for such research. Clinics need to fend off marketing pressures to prematurely offer the newest tests to patients. Communities need to be involved in the process. We all need to work harder to dispel the myth that genetics is destiny and that DNA is the blueprint for our humanity. Labs need to be fully transparent with their data even if it means sacrificing some basic business principles of corporate secrecy.

The explosive growth of lab positions for  patient-focused genetic counselors – roughly 20% of genetic counselors are employed by labs, according to the 2016 Professional Status Survey of the National Society of Genetic Counselors – can help implement a wiser policy on test development and introduction into medical care. Of course, as I have mentioned previously (ad nauseam, according to some) genetic counselors will need better training to navigate the murky, complex waters of conflict of interest.

Labs, clinicians, and patients need to recognize that market forces don’t have to be the only engine that drives policies on test development and introduction into clinical practice. We are talking peoples’ lives here, not trying to outmaneuver Pepsico’s Cheetos in the market niche for snacks that you can’t seem to stop eating, even when your hands and mouth turn that peculiarly unnatural orange color (did you know that there are 21 different types of Cheetos on the market? Cheetos Sweetos, however, has been discontinued.). Innovation can be wonderful, exciting, and improve medical care. Let’s just do it wisely.

                                                                                                                                                                                                                                                                   

  • – actually it would be more accurate to say that the P in NIPT stands for placenta. It is not really cell free fetal DNA; it’s cell free placental DNA.

2 Comments

Filed under Robert Resta

Appearances Are Important

About two months ago a story about conflict of interest in the Boston Globe caused a bit of a kerfuffle in the genetic counseling community. The article reported on the experiences of some pregnant women who felt that financial conflict of interest on the part of a few genetic counselors had resulted in the patients being given misinformation about the results of their non-invasive prenatal testing (NIPT). The counselors mentioned in the study had either received speaking fees from the lab where the testing had been performed or was an employee of a lab.

In my reading, the source of the patients’ understandable frustrations stemmed not so much from conflicts of interest on the part of the genetic counselors as it did from misunderstandings on the part of the patients and their physicians about the distinction between the false positive rate and the positive predictive value of NIPT. These two very different statistical measures can easily be confused with one another and this confusion has haunted maternal serum screening since AFP screening for spina bifida was introduced in the early 1980s (we sometimes used to darkly joke that the A in AFP stood for Anxiety and the F stood for an impolite word that would be familiar to Boston Red Sox fans when they describe their nemesis Bucky Dent). Providers and patients often incorrectly interpret a false positive rate of, say, 0.2% to mean that a positive test indicates a 99.8% probability the baby will be affected with the disorder in question. Who would not be anxious if they were convinced that there was over a 99% chance that their baby has a potentially serious health condition?

I am sure that the genetic counselors in the story understood the distinction between positive predictive value and false positive rates, and tried very hard to convey this to the patients. These counselors are well-respected and highly ethical colleagues. Really, they could have been any of us. We all have been in these counselors’ shoes and we were all feeling their pain – as well as the patients’ pain – when we read the story. Did some blind spot on the part of the genetic counselors not allow them to see how their counseling may have been influenced by an unacknowledged conflict of interest? Perhaps, and that is a point worth considering seriously. But as every genetic counselor knows, the anxiety and emotional fragility of couples faced with threatening information, particularly during pregnancy, usually dominate genetic counseling sessions and can result in patients coming away with a less than perfect comprehension of statistical fine points. We humans are emotional creatures, not Vulcans.

I think that the evidence for overt financial conflict of interest on the part of these genetic counselors was not strong. The counselors were certainly not exploiting these patients “for personal advantage, profit, or interest,” in the words of the Code of Ethics of the National Society of Genetic Counselors (NSGC). My guess is that the concern about conflict of interest arose from at least one of the patients not finding out about the counselor’s relationship with the lab until afterwards (from the article it is not clear if at the time of genetic counseling the patient was aware of the counselor’s financial ties to the lab but it seems that she learned about it only later).

And therein lies a critical point about conflict of interest – the appearance of financial conflict of interest can be just as corrosive as actual conflict of interest. Grumble though we may about the article, by bringing this to our attention, the reporter, Beth Daley, performed an important service for genetic counselors and our patients and we should be thankful for it. Public trust in our professional skills and judgement can be seriously compromised if patients perceive us to have a financial conflict of interest. Unless we openly and honestly confront conflict of interest in all its many forms, rather than deny its existence or ignore its potential, problems and misconceptions stemming from the appearance of conflict of interest will only worsen. And, possibly, a more blatant financial conflict of interest scandal may one day rear its ugly head (it would be astonishingly naive to believe that “It can’t happen here.”).

So how can the NSGC and individual genetic counselors help reduce the appearance of conflict of interest? We should be in the vanguard of addressing financial conflict of interest and demonstrate that we take it seriously. To this end, I have one concrete suggestion – the on-line NSGC directory of genetic counselors should include voluntarily provided information about the financial relationships of genetic counselors with any company other than their employers. And the directory should also clearly state who the employer is in situations where genetic counselors are employed by labs but working in hospitals and providers’ offices. While we are at it, maybe the American Board of Genetic Counseling should also consider doing this with its directory of certified genetic counselors. The Affordable Care Act requires this of physicians but for now the law does not apply to genetic counselors.

I am guessing that this suggestion might not immediately sit well with some of us. But once you get past your initial reaction and think about it a bit more clearly, it is a simple and powerful idea. It is also consistent with Section 1 of the NSGC Code of Ethics, which states that genetic counselors should:

Acknowledge and disclose circumstances that may result in a real or perceived conflict of interest.
Avoid relationships and activities that interfere with professional judgment or objectivity.

Actions are more powerful than words. Voluntarily including this information in the NSGC directory demonstrates that genetic counselors recognize that conflict of interest is a real problem and that we are not sitting around waiting to do something only if some federal law eventually requires us to do so. It allows patients to learn beforehand about a genetic counselor’s financial ties and gives patients the opportunity to discuss it openly with counselors. Or, if patients are so inclined, they can seek an alternative counselor or a second opinion.

Transparency is always the best policy – for us and for our patients.

5 Comments

Filed under Robert Resta

Everyone’s Worst Nightmare

The story that I tell here is, I know, a one-sided tale. It is also the source of pending litigation. A friend of a parent of the child reached out to me to ask me to share the story with the genetics community with the hope that some good could come out of a terrible experience, and did so with the approval of the parent’s lawyers. I obtained the details from publicly available records. I am not passing judgment on who was right, who was wrong, who did what, and who didn’t do what; the lawsuit will rule on that. I have had no involvement with the care of the patient or the subsequent legal wrangling, nor do I have any particular expertise about the disorder in question. For months I have struggled with whether the DNA Exchange is the appropriate venue for this, but ultimately decided that the family’s voice needs to be heard. I have largely anonymized the story because, really, specific names and diseases do not matter. What matters is that steps need to be taken to help ensure that other patients, families, providers, and laboratories do not repeat this sad tale.

The child was born about a decade ago, the product of an uncomplicated, happy, and desired pregnancy. At a few months of age, the child developed seizures after receiving a routine vaccination and went on to experience ongoing seizures of differing types. Various diagnoses were entertained particularly mitochondrial diseases and treatment included standard anti-seizure medications. A number of specialists were involved with the child’s care, including geneticists. Early on in the work-up genetic testing identified a mutation in a gene linked to a disorder that would explain the child’s seizures, a finding which the lab interpreted as a variant of unknown significance (VUS). Based on available literature at the time, there was some reason to believe that the variant might be a pathogenic mutation – it had been reported in affected patients –  but determining the clinical significance of a gene mutation is a problem that continues to plague genetic testing today.

Now here is where the story gets complicated and fuzzy, and to me where the tragedy starts to unfold. Apparently, the physician who ordered the test decided that the genetic test result was inadequate to help establish a definitive diagnosis, and pursued other diagnostic possibilities. As far as can be gleaned from the records, the genetic test results were not shared with the family although some of the treating physicians had considered the diagnosis on clinical grounds. The child continued to be treated with medications that, unfortunately, worsen the seizures for the condition that the child was ultimately diagnosed with – a condition caused by mutations in the gene in which the VUS was found. Sadly, the child died a few months shy of 3 years old from intractable seizures likely related to the contraindicated seizure medications.

The family did not find out about the genetic test results until about 7 years after the child died and only then after a parent requested the results. A few months later, the lab produced a revised report that reclassified the variant as a disease-associated mutation. Curiously, the report does not contain a revision date nor does it include the reasoning or data that led to the revised interpretation.

On one level, this story tells the genetics community nothing it did not already know – interpreting the clinical significance of a VUS is a terribly complicated and at times subjective affair. There is no single gold standard that can be used to determine clinical significance, which involves complex statistical, genetic, and biological analysis. Two equally capable labs can look at the same set of data and come up with diametrically opposite conclusions. Articles address the frequency of variants in genetic testing and differences in interpretation, along with providing an idea of the scope of the problem. But statistics are not stories. Stories convey the human impact of statistics and the urgency of the problem. As the saying goes, one death is a tragedy; a million deaths is a statistic (attributed to, of all people, Joseph Stalin).

Public databases such as ClinVar are starting to address this problem but they are still in their infancy. Indeed, a recent check of ClinVar revealed only one entry for the variant in question and the entry doesn’t even classify the variant. As human genome testing is ordered at exponentially increasing rates, the need for a uniform approach to genetic test interpretation and data-sharing is beyond pressingly critical. Restrictive gene patents and data hoarding may be good for business but they are not good for patient care. Lots of money will be made through genetic testing; some portion of those profits need to be channeled to funding well-curated freely available databases ( a database that is not well-curated is useless, and potentially harmful). Perhaps there could be tax breaks for labs that share data and government funding could favor research projects utilizing labs that share variant data.

But this story highlights other potential weaknesses in the genetic testing process. Parents and patients need to have pre-test genetic counseling so they are clearly informed when genetic testing is ordered. Results need to be explained to patients, even if they are uncertain. This is no mean feat, especially when a patient is going through an extensive work-up and many tests of all varieties are being ordered. Results have to be clearly available in medical records so all providers can have ready access to them, and patients should always have a copy of their test report made available to them along with an explanatory letter. A letter to the family summarizing the results could have prevented a lot of anguish for this family. There must be good mechanisms in place to regularly update test interpretations and for those updated interpretations to be communicated clearly and without delay to providers and patients. Patients should be encouraged to actively participate in seeking more information about their genetic test results and to enroll in centralized databases such as PROMPT. Maybe labs should allow a random sample of their report interpretations to be audited by an unbiased third party such as the College of American Pathologists to assure adherence to test interpretation guidelines. This could be a voluntary program but labs may be eager to participate as a selling point of their commitment to accuracy. Governments and insurers must allot the funds and resources for all this to take place.

The outcome here was the worst possible for everybody – most especially the patient and the patient’s family, but also no lab and no care provider ever wants something like this to happen to a patient. It haunts us all. If any good can come out of this, then this story will inspire us to work with greater urgency and cooperation to create workable solutions. Our patients deserve no less than the very best.

This posting is dedicated to the memory of the child whose all-too-short life is discussed here.

7 Comments

Filed under Robert Resta

The GC Crucible: the pressures on modern genetic counselors open the doors to opportunity

A Guest Post By Brianne Kirkpatrick

In a chemistry lab, a ceramic crucible held over an open flame melds disparate materials into a single, new, cohesive thing. Indestructible, it stands up to the heat and pressure. When used in metaphor, it’s a severe test or tribulation that leads to transformation. What comes out of a metaphorical crucible is the true character brought about by the need to adapt and change in a new environment.

 

If there is one thing I can get behind, it’s a belief that our job as genetic counselors is getting

harder. We work in a cauldron of new pressures and new challenges, ones that are causing us to adapt and discover what is at the core of our profession and what make us strong and unique, as individuals and as a cohesive group. We’re in a crucible right now, and that Bunsen burner is cranked up high.

 

Our clinical challenge is that the more we learn about genetics, the more complexity we discover (see item two in Laura Hercher’s top ten stories list for 2015 ). More information makes our job harder, even as it provides new hope for our patients. Similarly, the challenges of discovery and complexity that complicate our lives also provide new opportunities for genetic counselors.

 

How do we capitalize on those opportunities? Here are three suggestions:

 

  1. Rally around the development of the Genetic Counseling Assistant vocation. The NSGC funded a grant to study this, and there have been discussions about this at recent meetings and on various listservs. GCAs job are available, and individuals are employed as GCAs around the country already, in laboratory and clinical settings. Like a para-legal to a lawyer, GCAs master administrative tasks and carry the burden of extra work that often sidelines the genetic counselor or reduces his or her efficiency – phone calls, paper work, records requests, insurance pre-certifications, initial intakes, and the like. The only way we are going to keep up with the demand for GC services is to increase efficiency for ourselves and free up genetic counselors from work that impedes their ability to serve all who need and are seeking their services.

 

  1. Evolve or die. We as a profession must figure out how the future of genomics will include us. To do this we must immerse ourselves in current issues – in the clinic, in the research world, in the spheres of business and government – and then speak up when the genetic counselor voice must be heard. Get involved in your state’s genetic counselors’ group (consider founding one if it doesn’t exist). Volunteer in groups and for projects of the National Society of Genetic Counselors. Develop a professional social media presence. I chose to involve myself in the NSGC Public Policy Committee, believing strongly that taking a stand on issues of policy that affect us as genetic counselors allows us to determine our profession’s destiny, not others. Every committee and special interest group and task force of the NSGC contributes important work to the genetic counseling profession, but none of that work happens unless individuals decide to take that step and get involved.

 

  1. Embrace the expansion of our professional opportunities, despite the shortage of genetic counselors to fill existing clinical and laboratory roles. GC’s are finding opportunities to do something new and different, which is fitting for a group who collectively are thinkers outside of boxes. For as long as the profession has existed, GCs have used creativity, ingenuity and chutzpah, trailblazing new roles out of necessity. In every city and in every specialty area, there was a “first” GC there. If you have been contemplating blazing your own trail, now might be a good time to test out the waters, to find your niche and try something you’ve been dreaming of.

 

There are role models for those looking for them, as GCs excel at identifying needs and making connections. We’re problem-solvers and sleuths, and we’re a resourceful bunch. From this, we have seen Bonnie Liebers develop Genetic Counseling Services, which creates specialized teams of genetic counselors for growing businesses who need them, utilizing a world-wide network of CGCs. A group of GCs recently published an article in the Journal of Genetic Counseling sharing their experiences working for startup companies. I recently launched my own solo venture, WatershedDNA, to provide consultations on ancestry and other home DNA tests, both privately and as a part of larger projects or for companies. The niche I found was filling a need for genetic genealogists, adult adoptees, the donor-conceived community and others, all of them looking for someone who understood the psycho-social dimensions and the science behind genetic testing for ancestry and ethnicity. A perfect role for a genetic counselor, and a match for my own natural interests and passion.

 

Currently, I work one-on-one with clients referred to me by the genetic genealogy community, mostly individuals who have already pursued a home DNA test or are considering it. Just as in a clinical setting, we begin with family history when available and identify a client’s goals and areas of concern. We review any results they already have and discuss additional testing options, and how they might affect them and family members, now and in the future. Working fee for service and owning my own business come with financial uncertainty and lots of unknowns, but it gives me other freedoms, including flexibility and the sense of adventure that comes with pursuing an entrepreneurial path (like my father and grandfather – genetics?). It isn’t easy; I’m a worrier by nature, and some days that Bunsen feels like it’s a-burnin’ hotter than usual. But like the genetic counseling profession as a whole, I’ve found myself in the midst of a crucible that isn’t trying to destroy me; it is providing me an opportunity. A chance to change and create, to extend the reach of genetic counselors. It will engender a future of great things, if I allow it.

 

Let’s be willing to face the uncertainty that the wild west of genetics brings, be daring, and embrace the shades of gray as we blaze new trails. None of us chose the profession of genetic counseling because we thought it would be easy.

 

4 Comments

Filed under Guest Blogger

The Good Enough Sinner

In The Late Show, my previous posting to The DNA Exchange, I bared my soul about how one of my personality quirks – a perhaps overenthusiastic commitment to punctuality – insinuated itself into my genetic counseling practice. Shortly after writing that piece, I headed off for a trip to Berlin and Prague. In Prague, we visited The Museum of Communism, a quirky little place that felt like an attic where someone stored a bunch of leftover random items from the Soviet Era. While strolling through the collection, the note on the time card rack pictured below (with the note in the original language and a translation for museum visitors below it) caught my eye:

Time card holder from the Soviet Era, displayed at The Museum of Communism, Prague, The Czech Republic.

Time card holder from the Soviet Era, displayed at The Museum of Communism, Prague, The Czech Republic.

Okay, so even I admit that you can sometimes take a personal obsession with timeliness a little too far for its own good. Mr. Gorbachev, tear down that time card wall!

In response to The Late Show and Through A Counselor Darkly, my two previous postings to The DNA Exchange, several readers have rightly pointed out that the language used in those pieces was inherently judgmental, phrasing such as “unconscionably late” or “going on and on.” No argument from me there. In fact, that was the point of expressing my thoughts that way. What I have been exploring in these recent postings is my struggle between the personal Robert Resta and the professional Robert Resta. Personal Robert Resta can be a judgmental guy; Professional Robert Resta hopes that those judgments do not manifest themselves so blatantly when he interacts with patients.

In subtle and not so subtle ways, we feel pressure to be saintly counselors who always have pure thoughts about our beloved patients. In fact, though, most of us – and most especially me – are all-too-human sinners, not saints. Prick us and we will bleed. As a genetic counselor, I have plenty of impure thoughts and experience near occasions of sin, many of which can sometimes slip into my counseling sessions like a stealth bomber from my id. My counseling style will ineluctably reflect my personality, warts and all. In much the same way, my Catholic upbringing informs the imagery I use in these confessional pieces.

On the other hand, there are some good parts of my personality that I want very much to come out in my genetic counseling – wit, warmth, some measure of wisdom, compassion. I aim to be saintly when I am actively engaged in genetic counseling, but I try to maintain an active awareness of my human frailties and limitations. I am coal hoping my diamond shines through.

One can hear echoes of  Donald Winnicott‘s theory of The Good Enough Mother here (nowadays, we might say The Good Enough Parent). In Winnicott’s paradigm, The Perfect Mother is, paradoxically, an inferior parent because the child develops a fantasy bond based on an omnipotent and infallible parent, which no parent can ever be and which does not prepare the child for developing healthy, reality-based relationships with family members and the community. Instead, the Good Enough Mother’s inherent flaws are actually critical to normal child development and encourage healthy separation from dependence on the mother. I think this is what Annette Kennedy was trying to make us aware of more than 15 years ago when she wrote about supervision in genetic counseling and suggested that we should strive to be Good Enough Counselors (forgive me, Annette, if I have misrepresented you). In my version, we strive to be Good Enough Sinners.

By articulating my inner thoughts, insecurities, and feelings and sharing them with the genetic counseling community, it provides an opportunity for me to grow and to better mediate between Professional Me and Personal Me. Humbly, I like to believe that others may profit from this experience as well. If even a few of us become slightly better counselors as a result, well, Amen to that.

 

2 Comments

Filed under Robert Resta